L’idée d’envoyer des robots microscopiques dans le corps humain pour le soigner n’appartient plus à la science-fiction… Une équipe de chercheurs de l'École polytechnique fédérale de Zurich et du Technion a testé avec succès un nanorobot-nageur guidé à l’aide d’un champ magnétique. Injecté dans le circuit sanguin, il pourrait aller diffuser un traitement médical de façon très ciblée.
Faire naviguer des nanorobots dans les fluides corporels et notamment le sang est un défi technique aussi immense que crucial. La médecine d’après-demain pourrait s’appuyer sur ces alliés microscopiques pour délivrer des traitements médicaux de façon très ciblée et ainsi éviter de recourir à la chirurgie ou d’autres traitements plus invasifs.
On entend de plus en plus souvent parler de microrobots ou de nanorobots qui pourraient servir à la pharmacopée dans un avenir pas si lointain. Il y a quelques années déjà, nous parlions des expériences de l’université d’Harvard qui avait réalisé des nanorobots composés de brins d’ADN pour diffuser des médicaments de façon très ciblée à des cellules cancéreuses qui furent détruites à 50 %. L’année dernière, nous avons consacré un article à un microrobot à l’échelle du micron doté d’un système de propulsion inspiré du pétoncle.
Plus récemment, des chercheurs de l’université de Californie à San Diego (États-Unis) ont réussi une grande première en envoyant un nanorobot délivrer des médicaments dans un organisme vivant, en l’occurrence une souris. L’engin, qui mesure 20 micromètres de long et 5 micromètres de diamètre, était propulsé par des bulles de gaz produites par le contenu de l’estomac du rongeur.
La miniaturisation extrême n’est plus un obstacle technique mais il reste une importante difficulté : le contrôle du déplacement. Une fois injectés dans un organisme, ces petits soldats doivent être guidés pour aller diffuser un traitement médical exactement là où il faut, ce qui implique notamment de passer par le circuit sanguin. L’une des pistes techniques les plus prometteuses consiste à utiliser un champ magnétique externe. C’est l’option choisie par une équipe réunissant des scientifiques de l'École polytechnique fédérale de Zurich et du Technion, l’Institut israélien de technologie